
ORNL/TM-2021/2141

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

NEAMS Workbench MOOSE
Integration Update

Robert A. Lefebvre
Brandon R. Langley
L. Paul Miller
Mark L. Baird
Benjamin S. Collins

August 27, 2021
Approved for public release.

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of Energy
(DOE) SciTech Connect.

 Website www.osti.gov

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone 703-605-6000 (1-800-553-6847)
 TDD 703-487-4639
 Fax 703-605-6900
 E-mail info@ntis.gov
 Website http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
representatives, and International Nuclear Information System representatives from the following
source:

 Office of Scientific and Technical Information
 PO Box 62
 Oak Ridge, TN 37831
 Telephone 865-576-8401
 Fax 865-576-5728
 E-mail reports@osti.gov
 Website http://www.osti.gov/

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

ORNL/TM-2021/2141

Nuclear Energy and Fuel Cycle Division

NEAMS WORKBENCH MOOSE INTEGRATION UPDATE

Robert A. Lefebvre
Brandon R. Langley

L. Paul Miller
Mark L. Baird

Benjamin S. Collins

August 27, 2021

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-BATTELLE, LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725

iii

CONTENTS

CONTENTS ... iii
LIST OF FIGURES ... v
LIST OF TABLES .. v
ABBREVIATIONS ... v
ABSTRACT .. 1
1. INTRODUCTION .. 1

1.1 WORKBENCH ANALYSIS SEQUENCE PROCESSOR (WASP) ... 2
1.2 LANGUAGE SERVER PROTOCOL (LSP) ... 2
1.3 RUN TIME ENVIRONMENT (RTE) ... 3

2. WORKBENCH AND MOOSE APPLICATION INTEGRATION .. 3
2.1 TESTING ... 3
2.2 IMPROVEMENTS ... 4
2.3 WORKBENCH MOOSE APPLICATION FEATURES ... 5

2.3.1 Application Configuration and Local and Remote Job Launch 5
2.3.2 Input Content Assistance ... 6

2.4 DATA AND MESH INTERACTION ... 11
3. MAINTENANCE ... 14

3.1 PYTHON 3 ... 14
3.2 Qt5 .. 14

4. CONCLUSIONS .. 14
5. ACKNOWLEDGMENTS .. 15
6. REFERENCES ... 16

v

LIST OF FIGURES

Figure 1. Multiple MOOSE application remote run configurations. ... 6
Figure 2. MOOSE input syntax highlighting. ... 7
Figure 3. MOOSE syntax color settings. ... 7
Figure 4. MOOSE application mesh component autocomplete listing with documentation

snippets. .. 8
Figure 5. MOOSE application referential input autocomplete listing. .. 8
Figure 6. Interactive input validation panel. .. 9
Figure 7. Document navigation panel and editor drop down items. .. 9
Figure 8. Select and open file paths in document and output. ... 10
Figure 9. Navigation panel’s associated files context item. .. 10
Figure 10. Create template from nominal input document. ... 11
Figure 11. Templated placeholder with preselected name ready for editing. .. 11
Figure 12. Input originating the mesh inspection. ... 12
Figure 13. Toggle advanced Properties view, required to interact with Exodus sets. 13
Figure 14. Set activation and application required for inspection from input file. 13

LIST OF TABLES

Table 1. Summary of improvement metrics .. 5
Table 2. Validation error types .. 5

ABBREVIATIONS

CSG constructive solid geometry
GUI graphic user interface
LSP Language Server Protocol
MOOSE Multiphysics Object-Oriented Simulation Environment
NEAMS Nuclear Energy Advanced Modeling and Simulation
RTE run time environment
WASP Workbench analysis sequence processor

1

ABSTRACT

The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Workbench is a graphical user
interface (GUI) that provides a common analysis environment for the accelerated use of the NEAMS
toolkit. To improve design and analysis of current and future nuclear energy systems, the NEAMS
Workbench provides an integrated development environment for model creation, review, execution,
output review, and visualization for integrated tools. In addition to a GUI, the NEAMS Workbench
provides the Workbench Analysis Sequence Processor, an open-source tool set that facilitates input-
content assistance for supported domain-specific input languages and user-friendly syntaxes. These
supported syntaxes enable accelerated development and deployment of enhanced user inputs and
workflows. The Multiphysics Object-Oriented Simulation Environment (MOOSE) has been supported in
the NEAMS Workbench since 2016 and receives continuous updates. Efforts to improve MOOSE-based
tool integration in the NEAMS Workbench are ongoing. This document details the current and planned
enhancements of the NEAMS Workbench and the MOOSE framework to improve integration and
usability of MOOSE-based applications within the NEAMS Workbench.

1. INTRODUCTION

The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Workbench initiative started in 2016
to provide a common analysis environment for the accelerated use of the NEAMS toolkit [1]. By
providing an integrated development environment that facilitates the model creation, review, execution,
output review, and visualization for integrated tools, the NEAMS Workbench consolidates code
interactions and can shorten model development iterations. The Workbench is composed of three software
components: (1) the desktop application or graphical user interface (GUI), (2) the application run time
environment (RTE), and (3) the analysis sequence processor. The GUI provides an advanced text editor,
local and remote job launch capability, constructive solid geometry (CSG) visualization, 2D data plotting,
and an integrated mesh visualization and data analysis toolkit (VisIt or ParaView). The advanced text
editor provides input content assistance for accelerated model creation, editing, navigation, and
verification. The CSG model visualization enables visual verification of geometry prior to job launch for
integrated codes using CSG modeling methods. RTE is a Python scripting interface that normalizes the
Workbench interaction with local and remote job launches. Additionally, the RTE provides an extensible
workflow environment for specific analysis needs and serves to provide reproducible job execution and
an extensible application integration point. Remote job launch enables users to remain on a familiar
operating system while leveraging remote computing capabilities. The Workbench analysis sequence
processor (WASP) provides an open-source, domain-specific language processor toolkit from which
Workbench-integrated code input is lexed, parsed, interpreted, and validated. In addition to language
processors, WASP provides tools to assist with input generation and analysis workflows, as needed, for
application RTEs and the GUI [2].

Since the inception of the NEAMS Workbench, the vision has been to support multiphysics workflows as
provided by the Multiphysics Object-Oriented Simulation Environment (MOOSE) and as needed by the
user community. Per user feedback, a focus on integrating applications and existing workflows has been
prioritized, with demonstrated successes in neutronics [3,4], thermal hydraulics [5], fuel analysis and
performance [6], and associated model uncertainty quantification and optimization [7, 8].

In FY21, the primary goal was to complete integration of MOOSE-based applications into the NEAMS
Workbench. Specifically, work was undertaken to (1) ensure that the content assistance provided by the
Workbench was consistent with the MOOSE input processor, (2) provide problem mesh visualization and
face/block highlighting for select regions, (3) provide solution visualization, (4) ensure support for
MOOSE MultiApp inputs, (5) allow mesh overlay of coupled calculations, and (6) include key result

2

extraction and plotting. The remainder of this document will describe the Workbench components
involved, work accomplished to date, and future work.

1.1 WORKBENCH ANALYSIS SEQUENCE PROCESSOR (WASP)

The WASP provides open-source C++ lexers, parsers, and interpreters for language syntaxes that
facilitate the NEAMS code’s integration into the Workbench. The languages are generic and are
incorporated to facilitate the reuse and development of new codes and workflows. The language
processors typically produce parse-tree data structures. In addition to the language processors, WASP
contains a hierarchical input validation engine and template engine. The validation engine applies a
language input schema that describes the structure and component restrictions to validate that a given
input conforms to the application requirements. Any input components that do not adhere to the input
schema are flagged with a descriptive error message highlighting the location and cause of the problem.
The hierarchical template engine facilitates workflows that require input generation and input component
autocompletion as delivered by the NEAMS Workbench’s content assist capabilities. Lastly, WASP
includes command line programs for listing, selecting, converting, and validating supported syntaxes.
These aid in integration development, general input tasks, and related workflows.

WASP includes features that help domain researchers quickly design and process application user input
and provides a reusable component that reduces research software engineering costs. Furthermore, the
user-approachable input syntaxes and NEAMS Workbench content-assist features accelerate deployment
and user-adoption. The development of the Economics Dispatch Genetic AlgoRithms code, known as
EDGAR, is an example of this researcher-friendly workflow [8].

The formalization of integrated development environments has manifested in Microsoft’s Language
Server Protocol (LSP) [9]. The LSP provides a language server to communicate input diagnostics and
content assistance across program process boundaries. The LSP will reduce maintenance overhead,
improve interface stability, and enable the native MOOSE input framework’s diagnostics and data
structures to be communicated to Workbench. This protocol has been identified as the best path forward
for sustainable integration of the MOOSE framework into the NEAMS Workbench, and future integration
efforts will pursue this development path.

1.2 LANGUAGE SERVER PROTOCOL (LSP)

The Microsoft LSP provides language-specific content assistance between a single language server and
what could be multiple input/editor/development tools. By enabling inter-process communication via a
JavaScript Object Notation (JSON) remote procedure call [10], the language protocol enables a one-to-
many coupling strategy that is economically attractive for supporting domain-specific languages. An LSP
feature overview is outside the scope of this document, but the features are full and matured enough to be
incorporated into widely adopted integrated development environments such as Visual Studio Code, the
Eclipse integrated development environment, EMACS, and Vim [11]. Because the NEAMS toolkit is
under active development, the ability to harness the software development environments used for tool
development is an attractive benefit of natively supporting the protocol in the MOOSE framework.
Consolidating developer-software and software-input interactions will enable developers to use the same
input interaction mechanisms as end-users, thus improving user experience and shortening user-feedback
cycles.

The integration of LSP into the NEAMS Workbench has already facilitated support for the MCNP6
code [12]. Per developer iterations between the MOOSE and Workbench teams, the use of a MOOSE-
embedded language server is the best direction for current and subsequent integration investments. This

3

move will avoid development of duplicate software and will ensure that the MOOSE input features and
diagnostics are most accurately served to the user.

1.3 RUN TIME ENVIRONMENT (RTE)

The Workbench’s RTEs are interface scripts for normalizing the interaction between the Workbench and
the individual tool or application. The most basic functionality is the communication and configuration of
command line arguments. This enables a tool to have multiple run configurations within Workbench. The
RTE enables configuration of remote machines or execution of jobs on the user’s local machine. The
remote machines require an installation of Workbench and the application but can be run in a scheduled
(e.g., PBS, SLURM, IBM LSF) or unscheduled remote environment. These run configurations can be
edited as needed or saved as ready-to-select local or remote job-launch configurations.

2. WORKBENCH AND MOOSE APPLICATION INTEGRATION

Development and testing of the MOOSE framework and the NEAMS Workbench has required
considerable effort and resources. With both projects under active development, the integration testing
has required special attention to prevent feature regression. Additionally, software licensing and export
control restrictions have further complicated or delayed integration efforts. Workbench integration testing
involves generating the MOOSE application’s input schema and subsequently using the generated schema
to validate application inputs. Results convey problem areas that need improvement. The following
subsections detail the process and improvements implemented during FY21.

2.1 TESTING

Beyond running the typical continuous integration test suites for Workbench, an additional level of
application integration testing is regularly performed to identify and prevent regressions in application
integration. The primary component of integration is the user input. For each supported application, the
application is compiled, and its input schema is generated. This step ensures that the development
environment configuration and schema generation are functional. For MOOSE applications,
the --definition command line argument generates the WASP-formatted schema data. Subsequently, each
functional application test input (functional because it is expected to not fail) is run through the respective
WASP validation program. This process checks that the syntax and semantics are still supported. To date,
regressions in integration have subsequently prevented integration within the NEAMS Workbench from
reaching 100% input accuracy. For example, a legal MOOSE input component is nonetheless thought to
be invalid by Workbench. Most regressions are quickly addressed, but deficiencies remain in the NEAMS
Workbench’s input accuracy. These problems have led development teams to pursue consolidating and
improving input processing and diagnostics by using a language server embedded in the MOOSE
framework and inherited by all MOOSE applications.

Some details of MOOSE’s input schema generation are unavailable, which has also made the omission of
specific validation restrictions necessary. The validation rule that ensures referential components are
defined in their respective input locations is one example. For instance, all variables must be defined in a
Variables or AuxVariables block, and all functions must be defined in a Functions block. The MOOSE
framework does provide information that the schema generator uses to build relative lookup paths for any
input context containing a referential component. Workbench could then validate that all references have
been properly defined elsewhere in the input. However, it was discovered through integration testing
across various MOOSE applications that the MOOSE framework does not verify that a piece of input is
defined in its respective definition block until that component is used in the calculation. This was then
confirmed by the MOOSE development team.

4

In most cases, this validation rule is beneficial because it warns users about any undefined input or typos
that can cause name mismatches. However, the integration testing revealed many examples of legal input
with components that were undefined because they were never actually used in the calculation.
Workbench’s input validation engine cannot identify which pieces of input are used and which are not
used by the calculation without building the calculation itself. In this case, the MOOSE framework is
necessary for determining a class of input validation using input introspection.

For this specific situation, it was decided that false positive reports would be more disruptive to a user’s
workflow than unreported invalid cases. Therefore, this entire validation rule was removed from the
schema generation for all MOOSE applications. However, a new schema rule was generated to apply
these lookup paths to Workbench’s autocompletion recommendation lists without using them for input
validation. The direct integration of the language server into the MOOSE framework will remedy these
validation problems as MOOSE’s native input processor will be used for introspection to decide if
something is illegal.

2.2 IMPROVEMENTS

In FY21, the MOOSE framework was improved through continuous integration with WASP. This process
proactively highlights regression in WASP’s support of MOOSE syntax and semantics.

Workbench performs integration testing on the input processing for each MOOSE application in multiple,
successive steps. First, Workbench constructs a list that contains all application input files to be tested.
Every MOOSE application has a test harness that can be executed with various command line options to
perform a suite of regression tests. Most of these tests execute the application on a given input file, and
then they check the output for expected results. Workbench’s integration testing system uses the test
harness of each application as a starting point to gather its list of testable input files.

The --dry-run and --verbose command line options are provided to the MOOSE application test harness
which outputs the path of each directory and input file that would be used for every regression test
without actually executing any of the tests. This output is generated as a list of absolute paths to every
input file tested by the application. Notably, some input files will contain expected input errors because
they are being tested for failures by the application’s test harness. These input files must be filtered from
Workbench’s integration test list because they are not expected to be valid. This filtering is completed by
executing MOOSE’s --check-input option on each input file and only keeping those that report a valid
syntax.

The tested MOOSE application is then executed with the --definition command line option to generate its
WASP-formatted input schema. Next, a WASP utility attempts to parse every input file in the previously
constructed list. Any input that does not completely parse without a syntax error fails the integration test.
All inputs that successfully parse without error are then validated by another WASP utility that applies the
previously generated application input schema. Any input that produces validation errors fails the
integration test. Therefore, for an input to pass, its syntax must be successfully parsed, and its data must
be regarded as valid by the rules contained within its application input schema.

This style of test iteration lends itself to easy classification of errors and prioritization of fixes for the
tested MOOSE applications. All input files that fail the integration test are automatically grouped by their
reason for failure. These failure causes usually point directly to the issue that must be addressed. For
example, parsing failures must generally be addressed in the WASP parser package, whereas validation
failures must be addressed in the MOOSE schema generation code or deeper in the MOOSE input
framework. In each case, a ticket is opened to describe the issue, impact, and frequency so that the
problem can be fixed quickly. This automated integration testing and subsequent fixes to the framework

5

have resulted in significant improvements to the Workbench’s input processing of MOOSE applications
during FY21. A summary of these improvement metrics is presented in Table 1.

Table 1. Summary of improvement metrics

 October 2020 August 2021
 Inputs passing Inputs failing Success rate Inputs passing Inputs failing Success rate*

MOOSE 738 809 47.71% 1,621 53 96.83%
BISON 46 1,096 4.03% 1,322 17 98.73%
SAM 288 43 87.01% 331 62 84.22%
Total 1,072 1,948 35.50% 3,274 132 96.12%

(*) Code changes enabling August 2021 success rates may not yet be merged into MOOSE or Workbench.

The low success rates for MOOSE and BISON in October 2020 were caused by a change in the JSON
library used in the MOOSE framework, in which a slight change in string behavior exposed a deficiency
in integration testing. The 132 (or 3.88%) failing inputs were caused by 5 kinds of false validation
errors (Table 2). These validations errors were primarily caused by inadequacies in the Workbench
processors or missing data in MOOSE’s input schema.

Table 2. Validation error types

Type File count Failure percent of 132
Invalid input 104 80%
Type failure 72 55%
Wrong value type 15 11%
Unexpected occurrences 10 8%

An Invalid Input is defined as an input field that exists in the input but is not listed in the input schema.
This occurs in 80% of the failed inputs. Type Failures constitute 55% of failures, and Wrong Value Types
constitute 11% of failures. These failure types are caused primarily by Workbench’s current inability to
incorporate variable references. As a result, the variable name (a string), not its value, is type checked.
Examples of field type checks are minimum or maximum value validation. As the name suggests,
Unexpected Occurrence failures indicate that the expected occurrence of an input field is not expected.
All outstanding integration issues are an argument for consolidating MOOSE input processing under an
LSP.

2.3 WORKBENCH MOOSE APPLICATION FEATURES

Although all desired features are not yet implemented, this section highlights the features available as of
this writing.

2.3.1 Application Configuration and Local and Remote Job Launch

Workbench supports launching jobs on the user’s local machine or on a remote computing resource as
scheduled or unscheduled jobs. The user can configure an application to enable convenient execution of
application features and have these configurations simultaneously available in the same user session.
Workbench enables configurations for small test executions on the user’s local machine, larger jobs only
requiring a more powerful remote desktop workstation, or the largest jobs involving scheduled compute
resources and associated scheduler parameters.

6

In the case of MOOSE applications, users can launch the application with a select input or simply have
the application generate the associated mesh file once the mesh generation parameters have been edited.
Figure 1 illustrates a default configuration, Bison_wr9 1, and a custom configuration, Bison_wr9-mesh-
only). In the Bison_wr9-mesh-only configuration, the MOOSE application will generate the exodus mesh
file, and Workbench will present the file in the Associated Files context menu.

Figure 1. Multiple MOOSE application remote run configurations.

Because active development produces frequent changes to MOOSE applications, including changes to
input, Workbench enables users to easily reload the application’s “Grammar.” The grammar is composed
of the input schema, syntax highlighting rules, and input templates. For example, if a developer or user
updates the MOOSE application with a new AuxKernel, then clicking the Load Grammar button will
query the MOOSE application and obtain the new input field’s definition.

2.3.2 Input Content Assistance

The Workbench content assistance incorporates syntax highlighting for improved visual recognition of
input and features to assist users in navigating, creating, and editing inputs. Allowing input format and
documentation editing are intrinsic features of Workbench, but traditional GUIs often do not allow access
to the actual ASCII input and instead present data in widgets. These widgets require additional software
maintenance and specific logic to handle documentation styles. For example, does a user comment exist
above, after, or below an input field? Workbench focuses features on accelerating a user’s interaction
with the application’s native input, not a widget library prone to subjective user opinion which can create
distracting discussion involving what is easiest widget-form to use. This strategy has the added benefit of
increasing user-focus on the native input format and its ease-of-use, helping better prioritize user-facing
developer activity.

2.3.2.1 Syntax Highlighting

Improved visual presentation of input facilitates more input recognition and less memory recall, thereby
reducing navigation times and improving user comprehension [13]. As shown in Figure 2, syntax

7

highlighting of MOOSE input improves recognition of syntax constructs, parameter bocks, and associated
labels and values.

Figure 2. MOOSE input syntax highlighting.

As shown in Figure 3, the user can change the default syntax colors and styles for a given application using
Workbench’s grammar settings. To accommodate a user’s input extension preference, the extension for which
one wishes to apply the grammar settings can be customized to include different or additional file extensions.

Figure 3. MOOSE syntax color settings.

2.3.2.2 Autocompletion

Because the Workbench processes the application input schema and input syntax, it recognizes the
context in which the user’s cursor resides. This capability enables Workbench to present a list of available
input edit actions to the user (Figure 4). These actions allow a user to preview available components with
documentation snippets and to quickly recognize referential data entries (Figure 5), thus accelerating
input creation and editing. Additionally, Workbench identifies which input fields are referential, making it
easier for the user to quickly navigate to the definition of the reference.

8

Figure 4. MOOSE application mesh component autocomplete listing with documentation snippets.

Figure 5. MOOSE application referential input autocomplete listing.

2.3.2.3 Automatic Input Checking

Upon processing an input file, the Workbench applies the application schema to the generated parse tree
and produces the list of problems to the user in the editor’s Validation panel (Figure 6). As the user edits
the input, the document is rechecked, and the Validation panel’s listing is updated.

9

Figure 6. Interactive input validation panel.

Clicking an entry in the Validation panel’s list will place the user’s cursor at the indicated location,
enabling the user to quickly examine the problem. The Workbench provides general error messages that
effectively communicate many of the problems in an import, but a deficiency is that these messages are
not native MOOSE error messages. I.e., the same input error can be described differently when identified
by Workbench and MOOSE. The MOOSE framework native diagnostic messages will be accessible to
Workbench when the integration of the LSP into the MOOSE framework is complete.

2.3.2.4 Navigation

The Workbench presents the document hierarchy in a navigation panel and an editor-specific document
dropdown menu. When the user clicks an entry in the navigation panel or document dropdown, a cursor is
placed on the input component. This shows the full input context so that necessary changes to the input
can be made more quickly (Figure 7).

Figure 7. Document navigation panel and editor drop down items.

A right-click on a reference will present a context menu with the option to Goto definition… (Figure 8).
This takes the user directly to the location where the referenced input is defined, avoiding a time-
consuming search for the identifier. Additionally, navigation to the definition avoids possible distractions
and confusion caused by ambiguous identifiers in the input document.

10

Beyond intra-input navigation, the Workbench also provides access to associated files via the Navigation
panel’s Open associated files context menu and selection-based file open shortcut (Figure 9). File drag-
and-drop into Workbench is also supported.

Figure 8. Select and open file paths in document and output.

Figure 9. Navigation panel’s associated files context item.

Improved Inter-document navigation, especially for MOOSE MultiApp inputs, is expected with the LSP
implementation.

2.3.2.5 Edit Accelerators

Because engineers and the Workbench interact with different input formats, having bulk text operations
during model development iterations can be useful. Workbench tracks the comment delimiters and
provides application-specific comment creation. Additionally, using the CTRL + / key sequence will
comment or uncomment content based on the lines selected. This enables users to quickly test the
presence or absence of input fields.

As with all integrated development environments, TAB indents current or selected lines, and
SHIFT + TAB unindents current or selected lines. This enables quick formatting of document blocks for
improved arrangement. In addition to the block-wise commenting and indentation, the Workbench
supports column text editing using the ALT + MOUSE DRAG combination to select columns of text.

The Workbench also allows users to embed data into a mathematical formula and evaluate it to the form
required by the application. This is common when converting units from engineering to application
specifications. This feature can improve model quality by encouraging the user to capture the data
conversion formula in a comment, copy and paste the formula into the value field, and evaluate it to the
form that the application is requesting.

11

Parameter sensitivity and uncertainty quantification studies are a best practice in modeling and
simulation. The MOOSE framework provides stochastic tools for MOOSE applications; as described
above, these tools are available through the application’s input fields in the Workbench. Prior work in the
NEAMS campaign integrated the DAKOTA toolkit into the NEAMS Workbench [14]. The DAKOTA
toolkit, combined with the Workbench’s template-editing capability, provides a tool set that enables
engineers to conduct uncertainty quantification and optimization tasks. The Workbench’s template
capabilities enable a user to turn a nominal application input into a template using the Navigation panel’s
Create Template context menu item (Figure 10).

Figure 10. Create template from nominal input document.

Within a template file, any field can be converted to a parameter study attribute by selecting the field and
clicking the Template context menu item or using the shortcut key sequence CTRL + T or
COMMAND + T (macOS). The nominal text will be replaced with attribute delimiters and a selected
placeholder NAME (Figure 11). Because the placeholder’s name is selected, the user can immediately
begin typing the desired attribute name or parameter study expression. The template syntax is supported
by the Workbench’s open-source Hierarchical Input Template Expansion engine (HALITE), which is a
utility within WASP.

Figure 11. Templated placeholder with preselected name ready for editing.

2.4 DATA AND MESH INTERACTION

The NEAMS Workbench supports 2D data plotting and general mesh visualization. General mesh
visualization and analysis are enabled through the embedded ParaView data analysis and visualization
application [15]. MOOSE’s comma-separated value output can be opened in Workbench and processed
into interactive 2D plots. These 2D plots are highly configurable and can be saved to image, PDF, and
SPF formats. As a native Workbench ASCII file format, SPF preserves the perspective and data in such a

12

way that shared files still contain the data’s full context and remain interactive. For example, when a data
feature is zoomed and an SPF is generated, the reopened SPF will present the saved perspective, but the
user can still pan, zoom, or edit other attributes of the data presentation.

ParaView’s mesh capabilities are outside the scope of this document, but those specifically relevant to the
NEAMS Workbench and MOOSE’s ExodusII file are highlighted. The NEAMS Workbench was updated
to support quickly inspecting the blocks, side sets, and node sets contained in the MOOSE mesh files.
Once the user has opened the mesh file, selecting an identifier and choosing Inspect from the associated
context menu will instruct Workbench to deselect all mesh components except for the one to be inspected
(Figure 12).

Figure 12. Input originating the mesh inspection.

Because ExodusII mesh files are considered advanced, interacting with the datasets in ParaView is not
immediately intuitive and requires configuration before Workbench can inspect these data. There are two
important toggles that must be checked. First, the user should ensure that the advanced properties are
toggled on and set using the gear icon in the Visualization GUI’s Properties tab (Figure 13).

13

Figure 13. Toggle advanced Properties view, required to interact with Exodus sets.

The second important toggle is the Sets listing, which becomes visible after the advanced properties are
toggled on. If Sets are present, then checking the desired box and clicking on the Apply button will ensure
that the desired Sets can be toggled on when inspection is requested via interactions in the input document
(Figure 14).

Figure 14. Set activation and application required for inspection from input file.

Improvements to the NEAMS Workbench ParaView interface will continue as user feedback and requests
are received and familiarity with the ParaView codebase increases.

14

3. MAINTENANCE

As with all software, maintenance is an ongoing task that enables current and future development. The
NEAMS Workbench had two notable maintenance activities in FY21: (1) the migration of RTE from
Python 2 to Python 3 and (2) the GUI framework upgrade from Qt4 to Qt5.

3.1 PYTHON 3

The Workbench RTE uses an offline Miniconda environment to facilitate installation in non-networked
locations and allow extensions for proprietary scenarios. The RTE was originally written in Python 2
based on the availability of packages. With Python 2’s end of life in January 2020, migration to Python 3
was long overdue, and the Workbench team decided to move the Miniconda environment to Python 3 in
FY21. Unfortunately, testing identified gaps in the code coverage for remote job launch capabilities.
Therefore, the Python 3 migration has not yet been completed. Although the supported version of Python
is not yet being used, the offline Miniconda Python environment insulates the user and Workbench from
such changes. Only developers and tool integrators are required to interact with Python 2 code. Python 2
scripts can be written to be compatible with Python 3 to facilitate migration.

3.2 Qt5

The NEAMS Workbench uses the Qt GUI widget toolkit, which provides cross-platform widgets to
reduce platform-specific development efforts. Although Qt5 was a significant update from the Qt4 toolkit,
the NEAMS Workbench effort required minimal code changes. However, aa sizable effort was required
to update the NEAMS Workbench software bundle, fixup, and deployment logic. Additionally, minor
changes in the overall Qt widget look and feel have necessitated an ongoing review, with few updates
required. With the migration from Qt4 to Qt5, the integrated visualization tool also changed from VisIt to
ParaView.

4. CONCLUSIONS

In FY21, the NEAMS Workbench was updated with improved MOOSE application capabilities.
Development iterations between the MOOSE and Workbench teams highlighted an improved long-term
vision that better facilitates integration and usability. The NEAMS Workbench’s MOOSE input
interpreter was updated to improve accuracy and the user experience. An overall improvement from
35.50% to 96.12% was achieved in the parsing and validation accuracy of MOOSE input files. The
ParaView visualization and data analysis application’s integration was also finalized. The Workbench
MOOSE user experience improvements include the ability to open MultiApp referenced files and quickly
inspect MOOSE mesh components. Lastly, the NEAMS Workbench team conducted two notable
software maintenance activities: (1) they commenced the RTE from Python 2 to Python 3, and (2) they
upgraded the graphical widget framework from Qt4 to Qt5. Future work will continue to improve
integration through the incorporation of the LSP into the MOOSE framework and through additional GUI
adaptations to suit MOOSE user needs.

15

5. ACKNOWLEDGMENTS

This research was sponsored by the DOE NEAMS program. Special thanks to the collaborators who made
contributions or provided direction that facilitated improvements. Specifically, thanks to Cody Permann
and Brian Alger for their guidance and assistance with integration of the MOOSE framework
applications, Andrew Slaughter and Daniel Schwen for language server discussion, and Jason Miller for
integration of WASP into the MOOSE framework test suite. Thanks to Bob O’Bara, T. J. Corona, Ben
Boeckel, and Utkarsh Ayachit for collaboration on, and contributions to, the ParaView visualization
toolkit integration within Workbench. Additional thanks to Kaylee Cunningham for valuable testing and
feedback for MOOSE BISON.

16

6. REFERENCES

1. Lefebvre, R. A., Langley, B. R., and Thompson, A. B. M3MS-16OR0401086 – Report on NEAMS
Workbench Support for MOOSE Applications. ORNL/TM-2016/572. Oak Ridge, TN: Oak Ridge
National Laboratory, 2016. https://doi.org/10.2172/1328333.

2. Lefebvre, R. A., Langley, B. R., Miller, L. P., Delchini, M. G., Baird, M., and Lefebvre, J. P. NEAMS
Workbench Status and Capabilities. ORNL/TM-2019/1314. Oak Ridge, TN: Oak Ridge National
Laboratory, 2019. https://www.doi.org/10.2172/1570117.

3. Stauff, N., Lartaud, P., Jung, Y. S., Lee, C. H., Zeng, K., and Hou, J. Status of the NEAMS and ARC
Neutronic Fast Reactor Tools Integration to the NEAMS Workbench. ANL/NEAMS-19/1. Argonne,
IL: Argonne National Laboratory, 2019. https://doi.org/10.2172/1570009.

4. Stauff, N., Lee, C., Shriwise, P., Miao, Y., Hu, R., Vegendla, P., and Fei, T. Neutronic Design and
Analysis of the Holos-Quad Concept. ANL/NSE-19/8. Argonne, IL: Argonne National Laboratory,
2019. https://doi.org/10.2172/1524786.

5. Fan, Y., Delchini, M. G., and Lefebvre, R. A. “Verification of Nek4nuc (Nek5000 Integrated in
NEAMS Workbench) via Turbulent Pipe Flow Simulation.” Presented at the ANS Winter Meeting
and Nuclear Technology Expo, Chicago, IL, November 2020.
https://www.osti.gov/servlets/purl/1731054

6. Cunningham, K. M., Powers, J. J., and Lefebvre, R. A. Modeling the IFR-1 Experiment: A BISON
Metallic Fuel Benchmark. ORNL/TM-2019/1270. Oak Ridge, TN: Oak Ridge National Laboratory,
2019. https://doi.org/10.2172/1649544.

7. Zeng, K., Stauff, N. E., Hou, J., and Kim, T. K. “Development of Multi-Objective Core Optimization
Framework and Application to Sodium-Cooled Fast Test Reactors.” Progress in Nuclear Energy 120
(February 2020). https://doi.org/10.1016/j.pnucene.2019.103184.

8. Stauff, N., Maronati, G., Ponciroli, R., Ganda, F., Kim, T., Taiwo, T., Cuadra, A, Todosow, M.,
Talbot, P., Rabiti, C., Dixon, B., and Kim, S. Daily Market Analysis Capability and Results.
ANL/NSE-19/5. Argonne, IL: Argonne National Laboratory, 2019. https://doi.org/10.2172/1511150.

9. Microsoft Corporation. “Language Server Protocol Specification – 3.16.” Updated December 14,
2020. https://microsoft.github.io/language-server-protocol/specifications/specification-current.

10. “JSON-RPC 2.0 Specification.” Updated January 4, 2013. https://www.jsonrpc.org/specification.

11. “Implementations – Tools Supporting the LSP.” https://microsoft.github.io/language-server-
protocol/implementors/tools.

12. Dominesey, K. A., Kowal, P. J., Eugenio, J. A., and Ji, W. “Scientific Workflows for MCNP6 and
PROTEUS within the NEAMS Workbench.” EPJ Web Conferences 247, 06052 (2021).
https://doi.org/10.1051/epjconf/202124706052.

13. Asenov, D., Hilliges, O., and Müller, P. “The Effect of Richer Visualizations on Code
Comprehension.” Presented at the 2016 CHI Conference on Human Factors in Computing Systems,
San Jose, CA, USA, May 7–12, 2016. https://doi.org/10.1145/2858036.2858372

14. Swiler, L. P., Lefebvre, R. A., Langley, B. R., and Thompson, A. B. Integration of Dakota into the
NEAMS Workbench. SAND2017-7492. Albuquerque, NM: Sandia National Laboratories, 2017.
https://doi.org/10.2172/1372616.

15. Ahrens, J., Geveci, B., and Law, C. “ParaView: An End-User Tool for Large Data Visualization.”
Part 9, Chap. 7 in Visualization Handbook. Elsevier, 2005.

